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Abstract

A great deal of progress has been made in recent years in the field of global digital image correlation (DIC), where
higher-order, element-based approaches were proposed to improve the interpolation performance and to better capture
the displacement fields. In this research, another higher-order, element-based DIC procedure is introduced. Instead
of the displacements, the elements’ global nodal positions and nodal position-vector gradients, defined according
to the absolute nodal coordinate formulation, are used as the searched parameters of the Newton–Raphson iterative
procedure. For the finite elements, the planar isoparametric plates with 24 nodal degrees of freedom are employed
to ensure the gradients’ continuity among the elements. As such, the presented procedure imposes no linearization
on the strain measure, and therefore indicates a natural consistency with the nonlinear continuum theory. To verify
the new procedure and to show its advantages, a real large deformation experiment and several numerical tests on the
computer-generated images are studied for the standard, low-order, element-based digital image correlation and the
presented procedure. The results show that the proposed procedure proves to be accurate and reliable for describing
the rigid-body movement and simple deformations, as well as for determining the continuous finite strain field of a
real specimen.

1. Introduction

In recent years, digital image correlation (DIC) has become a well-established optical method for determining
displacement and deformation fields by relating the grayscale intensity values of surface images before and after
deformation. As an experimental procedure, DIC has been extensively used in a variety of applications, e.g., it is fre-
quently employed for the characterization of complex materials [25, 27, 21] and deformation or damage mechanisms
[11, 13]. There are many advantages of the DIC, among others a relatively low-cost experimental equipment, simple
and fast specimen preparation and no limitations to specimen deformation (as long as the specimen stays is the camera
frame) [12]. Additionally, the experiments are not restricted to laboratory environment and are therefore suitable for
on-site measurements.
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In the DIC procedure, two main approaches were established to relate the reference and the deformed image,
i.e., the pointwise and the global approach. The pointwise approach [12] is frequently used due to its simplicity
and speed, despite the drawbacks of occasionally incorrectly identified displacement data and the need for additional
displacement-field smoothing. The global approach was introduced to resolve some of these problems by analyzing
the entire region of interest (ROI) at once [5]. Sun et al. [20] managed to implement the finite-element framework
into the global approach, where the ROI was divided into inter-connected finite elements. Besnard et al. [2] further
developed the method based on the optical flow, and employed the most commonly used bilinear shape functions for
4-noded plate elements to define the displacement fields (Q4-DIC).

By using the finite-element framework, the displacement continuity requirements were naturally satisfied and the
deformation field was obtained without the need for additional smoothing. For this reasons the global approach, based
on the element discretization of the ROI (element–based DIC or FE–DIC), is gaining in popularity and has already
been successfully used in many different applications, e.g., [8, 21]. In most cases, the Q4–DIC is employed, which
uses the low-order elements that use the displacements for nodal degrees of freedom (DOF), only - a drawback that
directly affects the identified displacement and strain fields. To address the problems regarding the low-order interpo-
lation, higher-order elements were introduced into the DIC. Ma et al. [30] proposed Q8-DIC, i.e., the implementation
of 8-noded elements using third-order shape functions to better cover the specimen with curve edges and to describe
more complex deformation fields. Further, by using the experiment-relevant higher-order shape functions, Hild et al.
[31] proposed a Beam-DIC as an integrated approach to directly identify the Euler-Bernoulli beam global DOFs,
without the need for post-processing the measured displacements. Last, to improve the DIC performance in terms of
lower uncertainty and noise levels for both the displacements and strains, Réthoré et al. [14] implemented higher-
order NURBS functions; their formulation of the DIC also gave better results than the higher-order C0 continuous
plate elements.

By using these approaches, the strain field could be better captured and fewer and bigger elements could be em-
ployed due to the higher performance of the elements. However, the use of these formulations for large-deformation
cases was not explicitly addressed in these investigations. There are special procedures to be used for large-deformation
analysis, as shown by Hild et al. in [32]. Furthermore, the drawback of the use of displacements to analyze highly
nonlinear systems still exists, since it is generally preferable to restrict the use of the displacements to linear strain
analysis and define the nonlinear strain measures based on the global point positions [4].

In this research, another global, FE–DIC procedure is presented that introduces a new interpolation scheme. In-
stead of the displacements, both the global nodal positions and the nodal position-vector gradients of the isoparametric
finite elements are defined as searched parameters that are directly identified from the image-correlation process. For
these reasons the presented procedure indicates a natural consistency with the continuum theory and therefore makes
it possible to directly implement nonlinear strain measures. Due to the global element representation, a relation be-
tween the DIC and the special large-deformation finite-element method, the absolute nodal coordinate formulation
(ANCF), is established.

The ANCF was presented by Shabana to analyze the dynamics of flexible bodies undergoing finite rotation and
deformation [17, 16]. In the ANCF, the position of the material point is described in the global coordinate system
according to the continuum theory, with the use of the nonlinear Green–Lagrange strain tensor as a deformation
measure. For the finite element, the global position coordinates and position-vector gradients are defined as the
nodal coordinates, and there is no limitations on the amount of deformation and rotation of the element. Due to its
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numerous advantages, the ANCF has been successfully employed in many different applications, e.g., [19, 26, 7, 22,
23]. Although the ANCF is primarily developed to analyze dynamical systems, its advantages are now also exploited
in the field of DIC.

Since in DIC we are dealing with a two-dimensional planar continuum, the use of reduced-order ANCF plate
elements is implied [6, 15, 18]. These plates satisfy the nodal positions and nodal position-vector gradients continuity
among the elements, as well as the displacement continuity along their boundaries. Each of the elements has 4 nodes
with 6 nodal coordinates. These coordinates, which are directly obtained from the correlation process, are further
used to define the nonlinear in-plane Green–Lagrange strain field. The presented procedure, called the ANCF–DIC,
therefore extends the Q4–DIC in taking advantage of the ANCF in terms of the nonlinear continuum theory. As such,
the ANCF–DIC presents an alternative experimental-numerical analysis of dynamical systems, e.g. [10], or to the
constitutive parameters identification, where the consideration of finite strains is necessary [1].

To verify the new procedure and to show its advantages, numerical simulations of simple deformations, rigid-body
translation and rotation are studied first on computer-generated images (CGI) and compared with the Q4–DIC. These
simulations are made for several element sizes and deformation conditions. A real large-deformation experiment is
then executed and analyzed using both methods to observe the strain fields and the displacement field continuity.

The paper is organized as follows: In Section 2, a short description of the ANCF theory in relation to the plate
element is given. The Q4–DIC is also presented in Section 2 as the basis for the further development of the method,
followed by the introduction of the ANCF–DIC procedure. In Section 3, the numerical simulations and the experi-
ment, together with the results, are presented. The conclusions follow in Section 4.

2. Theoretical background

2.1. Reduced-order ANCF plate element

In the absolute nodal coordinate formulation, the plate elements were developed to overcome some of the degen-
erate FE plates’ drawbacks [19]. The elements of different orders with respect to the number of the nodal DOF were
proposed to capture the desired deformation modes [6]. Since only the plane deformation is analyzed in the DIC, the
reduced-order plate element is employed without any consideration of the thickness direction.

The global position-vector r j of the point on the j-th plate element (Fig. 1) is defined in the plane as

r j(x j) =
[
r1 j r2 j

]T
= S j(x j) e j , (1)

where x j =
[
x1 j, x2 j

]T
is the local point position, e j is the vector of the element’s nodal coordinates

e j =

[
e1T

j e2T
j e3T

j e4T
j

]T
, (2)

where the global nodal positions and position-vector gradients are

ek
j =

[
rk

j rk
j,x1 j

rk
j,x2 j

]T
, k = 1, 2, 3, 4 , (3)
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where

rk
j,xl j

=
∂rk

j

∂xl j
, (4)

and S j(x j) is the matrix of the element shape functions [7] (see Appendix for details). The reduced-order plate
possesses 24 nodal DOF altogether, which completely describe the element’s configuration with 12 bicubic shape
functions of the matrix S.
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Figure 1: Planar ANCF plate element; global nodal positions and nodal position-vector gradients

In the ANCF, the rotation angle θ may be obtained from the orthogonal rotation matrix [4]

R =

[
cos θ − sin θ
sin θ cos θ

]
, (5)

which is defined with the polar decomposition of the position-vector gradients matrix J

J = R U , (6)

where U is the stretch tensor and
J =

∂ri

∂xk
, i, k = 1, 2 . (7)

For the deformation measure, the globally defined, nonlinear, in-plane Green-Lagrange strain tensor is used

ε =
1
2

[
JTJ − I

]
, (8)
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Figure 2: Main features of the Q4–DIC procedure, using the bilinear shape functions; a) The reference image, b) The deformed image

where I is a 2× 2 identity matrix. Considering the relations (1), (7) and (8), the in-plane Green-Lagrange strain tensor
of the j-th element is defined in terms of its nodal coordinates as

(εkl) j =
1
2

eT
j

(
∂S j

∂xk j

)T ∂S j

∂xl j
e j − δkl

 , k, l = 1, 2 . (9)

It is the absolute nodal coordinate formulation, summarized in this subsection, that is used to extend the Q4–DIC.
Since the latter presents the basis for the further development of the method, it is summarized first.

2.2. The Q4-DIC

Q4-DIC has been well researched in terms of its accuracy, robustness and reliability [20, 2]. The correlation
procedure between the reference image (Fig. 2-a) and the deformed image (Fig. 2-b) starts here by dividing the region
of interest (ROI) into elements, which are connected at the common nodes [20]. Between the elements, only the
displacement continuity is usually required. In contrast to the subset-based DIC, the correlation procedure is executed
over all the nodal displacements at once.

Let (x1i j, x2i j) and (x′1i j, x′2i j) be the i-th point in the j-th element of the reference and the deformed image,
respectively. In the Q4–DIC, the least-squares correlation coefficient is defined for the grayscale intensity levels
f j(x1i j, x2i j) and g j(x′1i j, x′2i j) for all the elements at once

C =

∑n
j=1

∑M
i=1

(
f j(x1i j, x2i j) − g j(x′1i j, x′2i j, p j)

)2∑n
j=1

∑M
i=1 f 2(x1i j, x2i j)

, (10)
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where n is the number of elements and M is the number of the element’s points. The point location in the deformed
element is defined as

x′1i j = x1i j + u j(x1i j, x2i j, p j) , (11)

x′2i j = x2i j + v j(x1i j, x2i j, p j) , (12)

where p j is the vector of the element’s displacements

p j =
[
u1 j, v1 j, . . . , um j, vm j

]T
, (13)

and m is the number of element nodes. In contrast to the subset–based DIC, the displacement fields are defined as

u j(x1i j, x2i j,p j) =

m∑
k=1

Ak(ξ, η) uk j , (14)

v j(x1i j, x2i j,p j) =

m∑
k=1

Ak(ξ, η) vk j , (15)

where Ak(ξ, η) are, in this case, the most commonly used bilinear shape functions of the conventional rectangular plate
element [29]. The minimization of the correlation coefficient (10) is executed over all the ROI using the Newton–
Raphson procedure

∇∇C(p0) (p − p0) = −∇C(p0) , (16)

to obtain the displacement parameter vector p of all the elements

p = [u1, v1, . . . , uN , vN]T , (17)

where N is the total number of nodes and p0 is the initial approximation.
To execute the Newton–Raphson procedure (16), the derivatives of the grayscale intensity of the deformed image

g with respect to the parameter vector (17) components are required. These can be obtained from the most frequently
employed bicubic sub-pixel interpolation [3]

g(x′1, x′2) =

3∑
r=0

3∑
s=0

αrs (x′1)r (x′2)s , (18)

where αrs are the coefficients of the bicubic surface, obtained with the grayscale intensity level of the neighbouring
points and the continuity requirements.

The unknown parameter vector (17) consists of 2 N components, which represent the displacements of all the
nodes. The displacement field is defined by the shape functions, from which the Green–Lagrange strain components
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Figure 3: Main features of the ANCF-DIC; a) The reference image, b) The deformed image

are defined as

ε11 =
∂u
∂x1

+
1
2

( ∂u
∂x1

)2

+

(
∂v
∂x1

)2 , (19)

ε22 =
∂v
∂x2

+
1
2

( ∂v
∂x2

)2

+

(
∂u
∂x2

)2 , (20)

ε12 =
1
2

(
∂u
∂x2

+
∂v
∂x1

+
∂u
∂x1

∂u
∂x2

+
∂v
∂x1

∂v
∂x2

)
, (21)

and in the case of small rigid-body rotations, the approximate angle of rotation is determined as [20]

θ ≈
1
2

(
∂v
∂x1
−
∂u
∂x2

)
. (22)

2.3. Absolute nodal coordinates in DIC

The ANCF–DIC is introduced here for the first time (Fig. 3). The procedure follows the steps of Section 2.2 with
the implementation of the absolute nodal coordinates, where the main difference lies in the continuum approach and
an additional consideration of the nodal position-vector gradients.
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The correlation criterion (10) is rewritten as

C =

∑n
j=1

∑M
i=1

(
f j(x1i j, x2i j) − g j(x′1i j, x′2i j, e j)

)2∑n
j=1

∑M
i=1 f 2(x1i j, x2i j)

, (23)

where e j is the element parameter vector, which consists of the reduced-order ANCF plate element nodal coordinates,
i.e., the global nodal positions and the nodal position-vector gradients (2, 3)

e j =
[
e11 j, . . . , e61 j, . . . , e1m j, . . . , e6m j

]T
, (24)

where ekm j is the k-th nodal coordinate of the j-th element’s m-th node. In contrast to the Q4–DIC, the displacement
of an arbitrary point δxki j on the deformed element (14, 15) is defined globally

δxki j = x′ki j − x0ki j = Si j
(
e j − e0 j

) ∥∥∥
k , k = 1, 2 , (25)

where ‖k stands for the k-th direction and Si j = S j(x1i j, x2i j) are the values of the element’s shape functions at the i-th
point (see Appendix). By defining e0 and e as the parameter vectors of all the elements’ nodes of the reference and
the deformed image, respectively

e = [e111, . . . , e611, . . . , e1mn, . . . , e6mn]T , (26)

e0 = [e0111, . . . , e0611, . . . , e01mn, . . . , e06mn]T , (27)

where n is the total number of elements, the correlation coefficient (23) is minimized using the Newton–Raphson
procedure

∇∇C(e0)(e − e0) = −∇C(e0) , (28)

where

∇C =

(
∂C
∂e

)
= −2 D

n∑
j=1

ET
j

 M∑
i=1

(
f j(x1i j, x2i j) − g j(x′1i j, x′2i j, e j)

) ∂g j(x′1i j, x′2i j, e j)

∂el


1, ..., 6 m

, (29)

and D is a constant

D =

 n∑
j=1

M∑
i=1

f 2(x1i j, x2i j)


−1

. (30)

E j is the 6 m×6 n assembly matrix, which in contrast to the Q4–DIC, also connects the nodal position-vector gradients
of the j-th element with the values of the other neighbouring elements. To see the construction of the assembly matrix,
the interested reader is referred to [30].

Considering the Vendroux and Knauss [24] numerical improvement of the Hessian matrix calculation, the second
derivatives of the correlation coefficient are written as

∇∇C =

(
∂2C
∂e2

)
= 2 D

n∑
j=1

ET
j

{ M∑
i=1

∂g j(x′1i j, x
′
2i j, e j)

∂ek

∂g j(x′1i j, x
′
2i j, e j)

∂el

}
k=1, ..., 6 m
l=1, ..., 6 m

E j (31)
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The Newton–Raphson procedure (28) converges on the norm of the parameter vector difference ||δei|| = ||ei − ei−1||,
based on which the convergence criterion is established. The computation stops at the k-th iteration, when ||δek|| < ε,
where ε is a prescribed value.

As before, the bicubic sub-pixel interpolation of the grayscale intensity is required to obtain the derivatives for
(29) and (31). Using the relations (18) and (25), the grayscale intensity at an arbitrary point of the deformed element
is defined as

g j(x′1i j, x′2i j, e) =

3∑
r=0

3∑
s=0

αrs
(
Si j E j e

∥∥∥
1

)r (
Si j E j e

∥∥∥
2

)s
. (32)

The derivatives are then obtained using the chain rule of differentiation

∂g j(x′1i j, x′2i j, e)

∂ea
=

2∑
k=1

∂g j(x′1i j, x′2i j, e)

∂x′ki j
Si j

∂
(
E j e

)
∂ea

∥∥∥∥
k
. (33)

From the obtained parameter vector (26), i.e., the global nodal positions and nodal position-vector gradients of all
the nodes in the ROI, the new configurations of the finite elements in the deformed image are determined by

r j = S j E j e , (34)

from which the rotation field and the in-plane Green-Lagrange strain components are determined using (5)-(7) and
(9), respectively. It is worth noting at this point that the number of parameters in the Newton–Raphson procedure
for the ANCF–DIC is three times higher than that for the Q4–DIC due to the implementation of the nodal position-
vector gradients. However, one could omit the number of nodal parameters and still keep the global description of the
elements, like, e.g., in [28].

3. Numerical verification and real experiment

To verify the new method and to show its advantages, a comparison between the Q4–DIC and the ANCF–DIC
procedures are made. For both procedures, the analyses are executed on both the computer-generated (CGI) and
real images under the specific computer-imposed and real deformation conditions. For all the computer-generated
deformation cases, the results are compared in terms of the obtained values’ differences from the prescribed ones, and
the standard deviations

σA =

 1
nt − 1

nt∑
i=1

(xi − x̄)2

1/2

, (35)

where A is the analyzed variable and nt is the total number of analyzed points.
For both methods, the setup and deformation conditions are identical. A square ROI is chosen and analyzed with

the same number of 4-node square plate elements, and the elements’ size and the pixel locations for the nodal position
coordinates are also the same.

It is commonly known that in the global DIC approach, the boundary elements perform poorly due to the lack of
continuity requirements [2]. For our purpose of assessing the ANCF–DIC with standard tests, the boundary elements
are therefore excluded [20], and only the interior elements are considered for the interpretation of the results.
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3.1. Numerical experiment

A numerical experiment is executed on a CGI, represented by a simple two-dimensional grayscale function
f (x1, x2) = 0.5 (sin(x1)/10 + cos(x2)/10). The purpose of this study is to determine the ANCF–DIC performance
without the influence of the instrumentation errors. The simulated simple deformation conditions, defined like in [20],
consist of the numerically generated image stretch, rigid-body translation and rotation. These conditions are imposed
on the images with a defined 421 × 421 and 401 × 401 pixels ROI. This area is analyzed using finite elements of
different sizes: 30 × 30, 40 × 40 and 50 × 50 pixels. The prescribed image-rotation angle is 1 degree (0.017453 rad),
the strains are ε011 = ε022 = 0.012, and the vertical and horizontal displacements are 0.5 pixels. All the deformed
images are generated using Matlab R© [9].

The comparison of the results for the Q4–DIC and the ANCF–DIC is presented in Table 1. For all the deformation
cases, the Q4–DIC describes the displacement data and the strain standard deviations better than the ANCF–DIC. This
is generally the case when the higher-order approaches are used, since the number of unknowns for these approaches
is larger. In comparison with the other higher-order approaches [30, 14], the ANCF–DIC gives roughly similar results;
the standard deviations are by up to one order of magnitude higher than those of the Q4–DIC, for the same element
size.

Both methods give better results, if the element’s size increases. When analyzing simple deformation cases, this
suggests that fewer and bigger elements are used to achieve better accuracy. However, when analyzing complex
(heterogeneous) deformations with the large Q4–DIC elements, the obtained results may not be accurate enough due
to the bilinear interpolation. Further, if a finer discretization with the Q4 elements is employed, the performance of
the elements starts to deteriorate [30] and the obtained stain fields are still discontinuous at the elements’ nodes.

3.2. Large-deformation experiment

To show the advantages of the ANCF–DIC over the Q4–DIC, a large deformation experiment was designed using
a specimen of an uncrimped stonewool fleece [33] (Fig. 4). The material of the specimen is known to be a highly
deformable, heterogeneous and anisotropic fiber-reinforced composite continuum, made of a mixture of stone fibres
and binding resin. This material was chosen for analysis since it possesses a naturally speckled surface and offers
great flexibility in obtaining large deformation states with relatively small forces.

There are special procedures to be used for the large-deformation analysis in the DIC, as shown by Hild et al.
in [32]. In our case, the image-updating procedure is employed, i.e., for every next step, the deformed image of the
previous step becomes the next reference image. The updating procedure has the drawback of error accumulation;
however, Hild et al. [32] showed that the strategy is robust and allows the identification of strains of order 1 and
higher.

A specimen of 401 × 401 pix size was chosen and discretized into 64 elements of 50 × 50 pix size (Fig. 6).
The specimen was fixed into an experimental device, which consists of an automatic rotation stage with installed
vertical needles, surrounded by a fixed framework (Fig. 5-a). The needles were fixed radially from the center to grab
the specimen during the stage rotation, regulated by the stepper motor, controller and PC. During the experiment,
a CMOS Casio EX-FH25 high-speed camera was used to record the deformation. The whole experimental setup
is shown in Fig. 5-b. The specimen deformation was achieved with a stage rotation of 40◦ with a constant speed
of 1◦/s (Fig. 6). For the analysis, 23 successive and equally time-spaced images were extracted from the recording
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Position of

fixation needles

Figure 4: Uncrimped stone wool fleece specimen for the deformation experiment

and normalized to the grayscale interval. The use of 23 images for 40◦ rotation may, in our case, cause a maximum
displacement of approximately 6 pixels between the two consecutive images. The convergence threshold for the NR
algorithm was set to ε = 5 · 10−3. The results of the experiment are shown in Fig. 6. The displacement field of the
Q4–DIC (Fig. 6-a) is continuous; however, the deformation of the elements is of low-order due to the bilinear shape
functions. On the other hand, due to the full nodal parametrization of the elements, the displacement field of the
ANCF–DIC (Fig. 6-b) satisfies the displacement continuity along the elements’ boundaries, even though higher-order
shape functions are used. These shape functions also allow the elements greater flexibility in adapting to the image
grayscale changes, which indicates that a smaller number of elements may be used to achieve an adequate correlation
performance. The only drawback of the ANCF–DIC is the computational cost; due to the increased number of nodal
parameters the simulation time is approximately one order of magnitude higher than that for the Q4–DIC. Fig. 7
shows the strain fields of the last deformed image from the experiment. The Q4–DIC strain fields are discontinuous
at the elements nodes and are uniform in the direction of the displacement field differentiation for the ε11 and ε22
strains. On the other hand, the ANCF–DIC captures the higher-order, in-plane Green–Lagrange strains in addition to
the nodal strain continuity. To compare the amplitudes of the identified strains, the maximal strain values in the areas
of the strain concentrations are analyzed for the Q4–DIC and the ANCF–DIC. In the present case, the maximal values
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Figure 5: Large deformation experiment: a) The rotation stage with vertical needles, b) The experimental setup

of the Q4–DIC are by 103 %, 27 % and 60 % lower than that of the ANCF–DIC, for ε11, ε22 and ε12, respectively
(Fig. 7). The considerable difference in maximal strain values is contributed to the higher-order interpolation and the
increased number of the nodal DOF of the ANCF elements.

4. Conclusions

In this research, an alternative procedure in the global digital image correlation (DIC) is introduced. Basically
a finite-element approach to the image correlation process (FE–DIC), the procedure implements the recently devel-
oped absolute nodal coordinate formulation (ANCF), which allows a specimen deformation analysis according to
the nonlinear continuum theory. The ANCF-DIC procedure employs the nonlinear, in-plane Green–Lagrange strain
tensor for the deformation measure that is defined with the nodal position-vector gradients of the planar ANCF plate
elements. The verification and performance evaluation of the new procedure is performed with numerical tests on a
computer-generated image (CGI) and a real large-deformation experiment. The research is summarized as follows:

1. By employing the ANCF plate elements, which also include the nodal position-vector gradients, the displace-
ment continuity along the elements’ boundaries is satisfied.

2. Due to the use of the higher-order shape functions, the globally defined nonlinear, in-plane Green–Lagrange
strain field is continuous at the elements’ nodes.

3. For the large deformation experiment, the proposed ANCF–DIC captures the strain fields better than the Q4–
DIC, particularly in the areas of strain concentrations.
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4. Due to the increased number of the element’s nodal parameters, the computational time of the ANCF–DIC is
roughly one order of magnitude higher than that of the Q4–DIC.

The proposed image correlation procedure relates the DIC to the position-based finite-element formulation, and
presents an alternative FE–DIC procedure for the study of systems undergoing finite deformation.

5. Appendix

The j-th element shape function matrix [7] is defined as

S j(x j) = Si j = S j(x1i j, x2i j) =
[
s1i j I, s2i j I, . . . , s12i j I

]
, (36)

where I is 2 × 2 identity matrix, and

s1i j = −(ξ − 1) (η − 1) (2 η2 − η + 2 ξ2 − ξ − 1) ,

s2i j = −a ξ (ξ − 1)2 (η − 1) ,

s3i j = −a η (η − 1)2 (ξ − 1) ,

s4i j = ξ (2 η2 − η − 3 ξ + 2 ξ2) (η − 1) ,

s5i j = −a ξ2 (ξ − 1) (η − 1) ,

s6i j = a ξ η (η − 1)2 ,

s7i j = −ξ η (1 − 3 ξ − 3 η + 2 η2 + 2 ξ2) ,

s8i j = a ξ2 η (ξ − 1) ,

s9i j = a ξ η2 (η − 1) ,

s10i j = η (ξ − 1) (2 ξ2 − ξ − 3 η + 2 η2) ,

s11i j = a ξ η (ξ − 1)2 ,

s12i j = −a η2 (ξ − 1) (η − 1) ,

ξ = x1i j/a, η = x2i j/a ,

where a is the rectangular plate size.
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Table 1: Results of the simulated rigid-body translation, rigid-body rotation and deformation of a computer-generated image; ZOI corresponds
to the image area without the boundary elements

Q4–DIC ANCF–DIC
element size 30 × 30 pix 40 × 40 pix 50 × 50 pix 30 × 30 pix 40 × 40 pix 50 × 50 pix

ROI size 361 × 361 pix 321 × 321 pix 301 × 301 pix 361 × 361 pix 321 × 321 pix 301 × 301 pix

a) Rigid-body translation
∆x1 = x̄1 − x01, ∆x2 = x̄2 − x02; x01 = 0.5 pix, x02 = 0.5 pix

∆x1 [pix] −1.67 · 10−3 −4.13 · 10−5 3.65 · 10−5 −2.28 · 10−3 −2.69 · 10−4 −7.46 · 10−5

∆x2 [pix] 1.83 · 10−3 4.95 · 10−4 2.70 · 10−4 1.32 · 10−3 −5.47 · 10−4 −5.27 · 10−4

σ∆x1 2.31 · 10−2 4.39 · 10−3 3.16 · 10−3 4.72 · 10−2 4.01 · 10−2 2.16 · 10−2

σ∆x2 2.26 · 10−2 1.12 · 10−2 4.52 · 10−3 2.33 · 10−2 6.87 · 10−2 4.21 · 10−2

σε11 8.78 · 10−4 1.00 · 10−4 6.32 · 10−5 1.23 · 10−3 7.02 · 10−4 2.39 · 10−4

σε22 6.73 · 10−4 1.41 · 10−4 5.72 · 10−5 1.50 · 10−3 7.49 · 10−4 2.52 · 10−4

σε12 5.63 · 10−4 9.86 · 10−5 4.84 · 10−6 1.19 · 10−3 9.95 · 10−4 1.66 · 10−4

b) Rigid-body rotation
∆ϕ = ϕ̄ − ϕ0, ϕ0 = 0.017453 rad

∆ϕ [rad] −7.72 · 10−4 −5.13 · 10−4 −4.56 · 10−4 2.61 · 10−3 −6.79 · 10−4 −5.75 · 10−4

σϕ 4.04 · 10−3 6.34 · 10−4 7.47 · 10−4 1.29 · 10−2 4.07 · 10−3 3.16 · 10−3

σε11 4.42 · 10−3 1.33 · 10−3 7.44 · 10−4 1.07 · 10−2 2.33 · 10−3 1.86 · 10−3

σε22 2.14 · 10−3 1.29 · 10−3 1.56 · 10−3 6.20 · 10−3 2.52 · 10−3 3.38 · 10−3

σε12 4.73 · 10−3 6.82 · 10−4 9.58 · 10−4 1.64 · 10−2 4.33 · 10−3 1.29 · 10−3

Deformation
c) ∆ε11 = ε̄11 − ε011, ∆ε22 = ε̄22 − ε022, ε011 = 0.012, ε022 = 0.012

∆ε11 −5.45 · 10−4 −4.19 · 10−4 −3.99 · 10−4 −5.50 · 10−4 −4.65 · 10−4 −4.39 · 10−4

∆ε22 −7.64 · 10−4 −5.74 · 10−4 −6.00 · 10−4 −7.63 · 10−4 −7.52 · 10−4 −5.95 · 10−4

σε11 2.25 · 10−3 1.02 · 10−3 8.16 · 10−4 9.95 · 10−3 3.03 · 10−3 1.05 · 10−3

σε22 3.76 · 10−3 1.85 · 10−3 7.99 · 10−4 5.47 · 10−3 2.72 · 10−3 1.47 · 10−3

σε12 2.00 · 10−3 9.04 · 10−4 3.54 · 10−4 1.07 · 10−2 5.12 · 10−3 9.69 · 10−4
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Figure 6: Comparison of the displacement fields for the a) Q4–DIC and b) the ANCF–DIC; the boundary elements are suppressed
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Figure 7: Comparison of the post-processed strain fields for the a) Q4–DIC and b) the ANCF–DIC
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